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Abstract-The theory of potential functions is applied to solve a number of three-dimensional problems involving
sheet-like inclusions embedded in elastic solids. Two types of inclusions are considered; namely, that of a rigid
elliptical disk and a rigid sheet containing an elliptical hole. By varying the ellipticity of the disk and hole, certain
information on the general character of the stresses around a plane inclusion of arbitrary shape may be obtained.
More precisely, if reference is made to a suitable coordinate system, the functional forms of the stresses in the
close neighborhood of the inclusion border can be expressed independently of uncertainties of both the inclusion
geometry and of the applied stresses or displacements. In general, the intensification of the local stresses can be
described by three parameters which may be used to establish criteria for the failure of the solid containing the
inclusions.

INTRODUCTION

DURING the past few decades, considerable attention has been devoted to the solution of
two- and three-dimensional problems of stress concentrations around inclusions of a
variety of shapes. Since the literature on this subject is extensive, only those works which
are pertinent to the present study will be cited.

The problem of a thin rigid circular disk embedded in an infinite solid and subjected to
a constant displacement normal to its plane was solved by Collins [1]. His results are
equivalent to the slow steady motion of a rigid disk in a viscous fluid. In a recent paper,
Keer [2J has considered a similar problem in which the disk is displaced in its own plane.
The case of an infinite solid containing a rigid sheet with a circular hole was also discussed
in [2]. The disturbance of an ellipsoidal inclusion in an otherwise uniform stress field was
examined by Eshelby [3,4]. In the limit as one ofthe principal axes of the ellipsoid vanishes,
the solution to the problem of a flat elliptical disk may be deduced from the work in [3,4].
The case when the ellipsoidal inclusion undergoes translational and rotational movements
was considered by Lur'e [5].

For the purpose of assessing the strength degradation of solids due to the presence
of disk-shaped inclusions, it is important to have a knowledge of the singular behavior of
the stresses near the sharp edges of the inclusions. To this end, the present investigation is
concerned primarily with the determination of stress solutions of the following boundary
value problems:

(1) A plane inclusion of elliptical shape in an otherwise uniform tensile field.
(2) Elliptical disk displaced in its own plane.
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(3) Displacement given to a rigid sheet with an elliptical hole.
(4) Elliptically-shaped disk displaced out of its own plane.

Referring to a system of Cartesian coordinates x, y, z, the z-axis will be directed normal
to the plane of discontinuity which is bounded by the ellipse

x 2/a2+y2/b2 = 1, z = 0 (1)

where a and b are the major and minor semi-axes of the ellipse, respectively. The center of
the ellipse is located at the origin of the coordinate system. The rectangular components of
displacement ux ' uy ' Uz and stress (lxx, (lyy' ---, 'zx are assumed to be continuously differ
entiable at all interior points of the solid and take definite values on either side of the
ellipse except that on the periphery of the ellipse the stresses may become infinitely large.
At large distances from the origin, all the stresses and displacements tend to zero for cases
(2) to (4). The problem is to find a suitable solution of the Navier's equation of linear
elasticity for a homogeneous, isotropic body.

In the absence of body forces, the displacement vector u is governed by the equation

1
V2u+-2~VV, u = 0

1- v
(2)

where v is Poisson's ratio. The gradient and Laplacian operators in three-dimensions are
denoted by V and V2, respectively. For problems exhibiting symmetry about the xy-plane,
which contains the surface of discontinuity, the displacement vector u may be expressed in
terms of a vector potential <I> with components cPx' cPy, cPz and a scalar potentiallj; [6].

u = <I> + zVlj;.

Hence, it is not difficult to verify that equation (2) can be satisfied by taking

and

(3)

(4)

The displacement vectors for problems possessing symmetry with respect to the yz- and
zx-planes may be obtained from equations (3) and (4) by cyclic permutation of the variables
x, y, z. For instance, the representation

u = <I>'+xVlj;',
alj;' 1 ,
- = --~V.<I>ax 3 -4v

(5)

applies to problems with symmetry about the yz-plane. In equation (5), <1>' and W' satisfy
the Laplace equation in three-dimensions.

It should be mentioned that equation (3) or equation (5) is a special representation of the
more general solution of Papkovitch [7J:

u = 4(1- v)B - V(R. B +Bo) (6)
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where R is the position vector. Denoting the components ofB by Bx , By, B., the Papkovitch
functions are related to «P and t/J in equation (3) as

A.. = _ oBo
'i"x ox '

A.. = _ oBo
'i"y oy ,

and the two components Bx ' By are taken to be zero.
Once the displacements are known, the stress tensor (J follows directly from the stress

displacement relation

(7)

in which J.l is the shear modulus of the material and I is the isotropic tensor.

TRIAXIAL TENSION OF ELLIPTICAL DISK

Consider an infinite solid with an elliptical disk lying in the xy-plane. The z-axis pierces
through the center of the disk whose surfaces are subjected to the displacements

for

Eux = -[O't- V(0'2+0'3)]X,

Euy = -[0'2-V(0'3+O't)]y,Eu. = 0
(8)

The Young's modulus is denoted by E. Now, the negative of the displacements in equation
(8) correspond precisely to those of a uniform state of stress in a solid with the disk absent,
I.e.,

0'z. = 0'3' (9)

Superposition of the solutions of the two preceding problems will leave both faces of the
disk free from displacement and will yield the result to the problem of a thin rigid elliptical
disk in an otherwise uniform state of stress. Hence, it suffices to solve the non-trivial second
fundamental problem owing to the boundary conditions given by equation (8).

Let the displacement components be expressed in terms of two harmonic functions
which are similar in form to those used in formulating the analogous crack problem, i.e.,

oFt oF2 oF2u =---
x ox ox oy

oFt oF2 oF2
uy = ay+ay+a-.x

(
02f t 02f2 02f 2)

U. = Z OZ2 + ox2 - oy2 .

(10)
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The functions Fj and F2 are given by

where

(j = 1,2)

F __2_( 2 8!2 _b2 8!2)
2 - 2 b2 a y O'l X O'l

a - uX uy

(11)

V2fj(x, y, z) = O.

Those terms in equation (10) containing!t (x, y, z) are derived from equation (3) by taking

8!t
<Px = (3 -4v) ax' <Pz = 0, (12)

and those with!2 (x, y, z) is a particular solution of the problem of an ellipsoidal inclusion in
an otherwise uniform field of stress as presented by Eshelby [3,4]*.

Upon substituting of equation (10) into (7) gives the stress components

(13)

To determine the unknown functions fj (x, y, z), j = 1,2, the symmetrical form of
ellipsoidal coordinates ~, 1], ( will be employed. The rectangular coordinates x, y, z of any
point ofthe infinite space will be expressed in terms of the triply orthogonal system ~, '1, (in
the form [8]

a2(a 2_b2)x2 = (a 2+Wa2+'1)(a2+O

b2(b 2 _ a2)y2 = (b 2+ ~)(b2 + 1])(b2+()

a2b1z2 = ~'1(

(14)

* More specifically, this particular solution follows from equation (3.1) in [4] by letting (in Eshelby's notation)

eft =1, eI2=-I, er3=O; eJ;=O, i¥j
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In the plane z = O±, the inside of the two-sided ellipse x2/a2+y2/b2 = 1 is given by ~ = 0,
and the outside by 1] = O.

The boundary conditions, equation (8), may be satisfied if

where

(j = 1,2) (15)

Apart from a multiplying constant, equation (15) represents the gravitational potential
at an external point of a uniform elliptical disk [9]. Such functions have been used in obtain
ing the solution to some closely related crack problems [10].

For subsequent use, the following* partial derivatives are computed:

of· 2A.
o~ = a3kJ2 [u-E(u)]x

ofj 2A j [ '2 2 snu cnuJ
oy = a3Pk,2 E(u)-k u-k .~ y.

The variable u is related to the ellipsoidal coordinate ~ by

and

E(u) = f: dn2
t dt.

(16)

The quantities snu, cnu, ---, represent the Jacobian elliptic functions and k, k' stand for

Equations (8) render a system of two algebraic equations for the two unknown constants
At and A 2 • This gives

A _ _a3_k2 ut[vM -N-(I-v)P]-u2[M -vN+(I-v)P]+vu3[M +N -2P]
1 - 2E -=-=-----'-----'--::....~2=:-=M'::-::N:-::--+--=P:-:-(M:-::-'+--,N=-=):-C--=------==-=-------=-

A _ a3k2 ut(vM +N)-u2(M +vN)+vu3(M -N)
2 - 2E 2MN +P(M +N)

* The higher order derivatives of the function f(x, y, z) can be found in a paper by Kassir and Sih [10].

(17)
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in which M, N, and P stand for
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M = (3 -4v)[K(k)- E(k)J

[
E(k) ]N = (3-4v) /12-K(k)

P = ~2 [(1 +k'2)K(k) - 2E(k)J.

(18)

Here, K(k) and E(k) are the complete elliptic integrals of the first and second kind associated
with the modulus k, respectively.

Once the constants Al and A 2 are known, the displacements and stresses at any point
of the solid may be computed. For instance, across the plane z = 0, it is found that

(O"zz)~=o = 4J.1~~;;';V) {-A l k2E(k)+A2[2k'2K(k)-(l +k'2)E(k)}

_ 8J.1(I-V)(A2-A I )X(I_ x2 _y2)-t
('xz)~=o - a3b a2 b2

__ 8J.1(l-v)(A , +A2)y(l_ x2 _y2)-t
('yz)~=o - ab3 a2 b2 .

(19)

Outside of the ellipse x 21a2+ y21b2 = 1, i.e., for 11 = O. The shear stresses 'xz and 'yz vanish
and

Equations (19) and (20) show that the shear stresses 'xz and 'yz are unbounded on the
boundary of the disk for ~ = 0 while the normal stress O"zz become singular on the edge of the
disk for 11 = O. The other components of the normal stress 0"xx and 0"yy are also singular on
the edge of the disk for 11 = O. Further, the stress exerted by the surrounding material on the
disk in the z-direction vanishes when the material is incompressible.

In the limiting case of a = b, E(k) = K(k) = n12, the constants Al and A2 in equation
(17) take the forms

a 3

A I = - (3 _ 4v)nE [(1 - v)(O" I +0"2) - 2vO"3J

A
2

= ~ (1 +V)(O"I +0"2)
nE 5-4v

(21)
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and equations (19) reduce to
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(1-2v)[(1-v)(0"1 +0"2)-2v0"3J
O"zz =

(3-4v)(1+v)

A i -A2 (r/a)cosO
0"xz = - 8J1(l- v) a3 J[1- (r2/a2)),

Ai +A2 (r/a) sin 0
0"yz = - 8J1(1- v) a3 J[1- (r2/a2)),

z = 0+, r<a

r<a

r<a

(22)

and O"xz = O"yz = 0 for r > a, z = O. These values agree with those obtained by Collins [1].
For the special case 0" 1 = 0"2 = 0, the shear stresses in equation (22) may be combined to
yield

_ 8v(1-v)0"3 ria
o".z = +n(l+v)(3-4v) J[I-(r2 /a 2 )J; r < a, z = o. (23)

The plus and minus signs refer to the lower and upper faces of the disk, respectively.

ELLIPTICAL DISK DISPLACED ALONG ITS MAJOR AXIS

Let an elliptical disk be embedded in an infinite solid and be placed in the xy-plane.
The disk is displaced along its major axis by the amount uo, a constant. The necessary
boundary conditions are

~=O

'1 = o.

The symmetry conditions suggest the following selection of potential functions:

(24)

4>~ = -(3 -4v)g+ :~, A.' = oh
'f'y oy' ljI' =g (25)

where 4>~, 4>~, 4>~ are the rectangular components of the vector cP in equation (5). The
functions g(x, y, z) and h(x, y, z) satisfy the Laplace equations

V 2g(x, y, z) = 0,

Putting equation (25) into (5), it is found that

V2h(x, y, z) = 0

oG
Ux = -4(l-v)g+ox'

in which

oG
U =-

z oz (26)

G = xg+h.
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L yz o2G

2~ = oyoz'

From equation (7), the components of stress are obtained:

(Jxx 22 og o2G
~= - (-v)-+-
2~ ox ox2 '

(Jzz = _2vog +o2G
2~ ox OZ2'

Lxy og o2G
- = -2(1-v)-+-
2~ oy oxoy'

L
ZX

og o2G
- = -2(1-v)-+-.
2~ OZ OXOZ

The appropriate harmonic functions for this problem may be chosen as

(27)

(28)
J

'xc ds 2B!
g(x, y, z) = B 1 ~ J[Q(s)J = -----;;-U,

J
x ds 2B2

h(x, y, z) = B2x ~ (a 2+ s)J[Q(s)J = a3k2[u - E(u)Jx.

Note that h(x, y, z), except for the multiplying constant, represents the derivative of the
gravitational potential at an external point of an elliptical disk with respect to x. For the
purpose ofevaluating the constants B! and B2, the displacement component Uz is computed:

- _ 2x[11((a
2
+~)(b2 +~)J~[B ~J

Uz - ab(~-11)(~-O ! +a2+~ .

The condition that U z vanishes everywhere on the plane z = °yields

B2 = -a2B!.

By virtue of equations (24), (26) and (29) for ~ = 0, B! is found:

B __ Uo ak2

! - 2 . [(3-4v)k2+1JK(k)-E(k)'

(29)

(30)

Knowing B! and B2, the displacements and stresses at any point of the solid can be
calculated. On the plane z = 0, the non-vanishing displacements are

(31)

and the stresses are

() = 8~(1- v)B1 (1- 2/ 2_ 2/b2)-t
LXZ~=O ab x a y

(32)
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(33)

Both 'X% and (J'%% are singular on the border of the ellipse x 2/a2+y2/b2 = 1, while 'y% = 0
everywhere on the plane z = O.

When a = b, K = E = n/2, equation (30) simplifies to the form

2auo
n(7 -8v)"

It can be verified that for r > a, Z = 0, ~ --+ r2_a2, and u --+ sin-1(a/r), equations (31) and
(32) are in agreement with equations (23) and (24) in [2], respectively, except for*

81l(1- 2V)(Uo) cos e
((J'%%)%=o = n(7-8v) -; . (r/a).J[(r/a)2-1J' r> a

where Uo corresponds to Ll in [2].
The foregoing method of solution may also be used to solve the problem of an elliptical

disk displaced in an arbitrary direction by a constant amount, say 150 , Ifw denotes the angle
between the x-axis and the direction along which the disk is caused to move, then the
boundary conditions, equation (24), may be generalized:

u% = 0,

'1 = o.
The displacements are expressible in terms of four harmonic functions as

aGo
U =--

% az
in which

Go = Gl +G2, G1 = xg1+h1, and G2 = yg2+h2

To satisfy the Laplace equations in three dimensions, gj(x, y, z) and hJ{x, y, z) are taken in
the forms

J
00 ds

gix , y, z) = Cj ~ .J[Q(s)J' j = 1,2

* Equation (33) may also be derived directly from equation (20) in [2J if the order of integration and differentia
lion is properly observed as follows:

1 o{. J+a f(t)dt }
(u..).~o = -;;(1-2v)- lim / 2 . 2 •

2 ox .-0 _a y [r +(z + It) J
8JlUo

f(t) = - n(7 _ 8v)"

Carrying out the integration gives

(U..)FO = 8Jl(1-2v)uo ~[sin-I(~)J
n(7 - 8v) ox r

= 8Jl(1-2v)u0(~)(r2_a2)-tcoS8.
n(7-8v) r

Hence, the factor (1- v) in equation (24) of [2J should be replaced by cos 8.
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Since the displacement Uz vanishes for z = 0, the constants D j may be expressed in terms of
Cj :

The remaining unknowns, say C j (j = 1,2), can be evaluated from the boundary conditions
yet to be satisfied and the solution of the problem is essentially complete.

DISPLACEMENT OF RIGID SHEET WITH ELLIPTICAL HOLE

Suppose that two semi-infinite solids are bonded perfectly to a thin rigid sheet with an
elliptical opening through which the solids are connected. The sheet is allowed to move in
the plane z = 0 by a constant amount parallel to the x-axis. The equivalent condition is to
specify a constant shear stress 'zx = '0 for e= O. Forthis problem, the following conditions
must be satisfied:

'1 = 0; U z = 0, z=O
(34)

The problem may be formulated in terms ofa single function p(x, y, z) which is related to «P
and t/J in equations (3) and (4) as

t/J = op
ax

where

V 2p(x, y, z) = o.

The representation of the components ofdisplacement as given by Trefftz [6] is

op 02p
U = -(3-4v)-+z-

x oz ox2 '
(35)

The stresses corresponding to equation (35) are given by

On the plane z = 0, equations (34) require that

(36)

op
oz = 0, '1=0 (37)
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The first condition in equations (37) is satisfied automatically by taking

C roo [XZ y2 Z2 ] ds
P(X,y,z)=2J~. a2 +s+b2 +s+-;-1 J[Q(s)]

while the second condition yields

a3k2k'z"

2jlC = k'zK(k)+ [(3 -4V)k~ - k,z]E(k)'

Once p(x, y, z) is determined, the displacements and stresses throughout the solid can be
computed from equations (35) and (36).

For z = 0, both uy and Uz vanish and

The stresses on the plane z = 0 are

4jl(1-2v)Cx (1-xz/az _ yZ/bZ)-~
a3b

(38)

and

(Uzz),,=o = (tyzk=o = 0, (Tzx)~=o = "0-
Using L' Hospital's rule, the constant C for a circular hole, a = b, may be recovered:

2a3T
C = 0

Ttjl(7 - 8v)

Aside from a couple of misprints, (uxl~=o, (Tyz),,=o, and (Tzx)'1=o check with those given by
equations (41) and (42) in [2] if"o is identified with Ub _The expression for

8(1-2v) ria ()
n(7 - 8v) J[1- (r/a)2] To cos

fails to agree with that of [2] for the same reason as mentioned earlier in the footnote on
p.233.

AXIAL DISPLACEMENT OF ELLIPTICAL DISK

If a thin rigid disk of elliptical shape is given a constant displacement Wo normal to its
plane; then

z = 0; (39)
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Q>z= -(3-4v)q, 1/1 = q. (40)

Inserting equation (40) into (3), the result is

oq
Ux = z-o ',x

oq
Uz = -(3-4v)q+z oz' (41)

From equation (7), it is further found that

(J'xx = _2vOq+Z02q, (Jyy = _2voq+zo2q
2J1 oz ox2 2J1 OZ oy2'

(J'zz oq oZq !xy 82 q
- = ~2(l-v)-+z-, - = z~ (42)
2J1 8z OZ2 2J1 ox8y

L yz oq oZq !zx oq 82q
- = -(1-2v)-+z-, - = -(1-2v)-+z-.
2J1 oy oyaz 2J1 ox OXOZ

The only unknown function q(x, y, z) satisfying

V2 q(x, y, z) = 0

can be taken in the form

i
X

) ds 2D
q(x,y,z) = D .; J[Q(s)] = -;;u.

Equations (39), (41) and (43) may be combined to give

(43)

D=
2(3-4v)K(k)'

Calculating for the derivatives of q(x, y, z) with respect to x, y, z, i.e.,

and so on ---, the non-trivial displacements and stresses for z = 0 are

and

1J = 0 (44)
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in which - (b2 +() is a positive definite quantity. The notations z = 0+ and z = 0- refer to
the upper and lower faces of the disk, respectively.

The force exerted by the elastic solid to oppose the displacement of the elliptical disk
may be found from the integral

Fz = tJ [(O'zz)z=o+ -(O'zz)z=o-] dx dy. (45)

The region L is bounded by the ellipse x2/a2 +i /b 2 = 1. Substituting equation (44) into
(45), Fz is obtained:

F =z
81l(I-v)wo r r(l-x2/a2-y2/b2)-tdxdy

(3-4v)b K(k) J1: J
161t1l(l-v)awo

(3 -4v)K(k) .

(46)

In the limit as a -+ b, equation (46) reduces to Collin's solution [1] for a circular disk.

THREE-DIMENSIONAL STRESSES NEAR INCLUSION BORDER

For the purpose ofestablishing possible failure criteria, the stresses near the border of a
plate-like inclusion will be investigated. It is convenient to introduce a rectangular cartesian
coordinate system n, t, z such that the origin of this system traverses the periphery of the
inclusion. The zn-, nt-, and tz-planes are known, respectively, as the normal, rectifying and
osculating planes to the curve which will be taken in the form of an ellipse.

In the immediate vicinity of the inclusion border, the ellipsoidal coordinates ~, 1], ( can
be expressed in terms of the polar coordinates r, edefined in the nz-plane, where r is the
radial distance measured from the edge of the inclusion and eis the angle between r and the
n-axis. The required relationships of ~, 1], ( to r, eare*

~ = 2abr cos2 ~
(a2 sin2¢+b2 cos2¢)! 2

2abr . 2 e
1] = sm -

(a 2 sin2¢+b2 cos2¢)t 2

( = _(a2 sin2¢+b2 cos2¢).

(47)

In equation (47), r is assumed to be small in comparison with a (or b) and ¢ is the angle
appearing in the parametric equations of the ellipse, i.e.,

x = acos ¢, y = b sin ¢.

Since the derivation ofthe local stresses is similar to those given by Kassir and Sih [10] for
the three-dimensional crack problem, the detail calculations will be omitted here. By means
ofequation (47) and the appropriate equations for finding the stresses, the following results

• A detailed derivation of equation (47) is given in [10].
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(Txx+ayy = (Jrr+ a 06

k l O( . °. 30)
ann = + J(2r) cos "2 3-2v-slll"2 sIll 2

k2 . O( ° 30)+ J(2r) Sill "2 2v+cos"2cos2 +0(1)

k l O( . °. 30)
a zz = - J(2r) cos "2 1-2v-slll"2 sIll 2

k2 . O( ° 30)+ J(2r) Sill "2 2-2v-cos"2cos2 +0(1)

k I ° k2 . °
atr = + J(2r)' 2v cos "2 + J(2r) 2v Sill "2 + 0(1) (48)

k 3 ()

Tnt = - J(2r) COS "2+ 0 (1)

kl . ()( () 3())
'nz = + J(2r) Sill "2 2-2v+cos"2COS2

k2 O( . °. 30)+ J(2r) COS "2 1-2v+slll "2 Sill 2 +0(1)

k 3 . °
'tz = + J(2r) Sill "2 + 0(1).

Although these stresses were derived from the solution of an elliptically-shaped inclusion,
they are in general valid for a plane inclusion of arbitrary shape. Moreover, the inclusion
border stress fields for the four preceding boundary-value problems are included in
equation (48) as special cases.

Now, it is significant to observe that equation (48) is composed of the linear sum of three
distinct stress fields each of which can be associated with a different mode of deformation.
Referring to Figs. l(a) through l(c), the intensity of the local stresses at the point P caused
by the movements of the inclusion in the n-, Z-, and t-directions are governed, respectively,
by the three parameters k l , k2 and k3 • These three modes of displacements are necessary
and sufficient to describe all the possible displacements of the inclusion. It will be shown
subsequently that the parameters k j (j = 1,2,3) depend only upon the prescribed stresses
or displacements and the inclusion geometry. The singular behavior of the inclusion-border
stresses is the same as that for a sharp crack. In other words, the 1/Jr type of stress singu
larity is preserved. However, unlike the crack problem, the angular distribution of the
stresses is a function of the Poisson's ratio of the elastic solid.

A close examination of the stress expressions in equation (48) reveals that ann' au> and
'nz correspond precisely to those obtained by Sih [11J* for a rigid line inclusion under the

• The slresses rr,,, rr88 , and r ... given by equation (48) in [llJ should be transformed into rectangular compo
nents rrxx • (J,_,_, r x)' in accordance with

rryy-rrxx+2irx)' = e- 2 ;8(rr88- rr,,+2ir'8)

For K = 3-4v, the functional forms of rrxx , (J", rxy correspond to rr•• , rr z" r.z in this paper, respectively.
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1-----n

J---n

FIG. 1. The basic modes of plane inclusion displacements.
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conditions of plane strain. In fact, the stress component (Ju is equal to v((Jnn + (Jzz), a condi
tion which is well known in the analysis of plane strain problems. The shear stresses 'nt and
'tz can be identified with the two-dimensional problem of a line inclusion subjected to
longitudinal or out-of-plane shear loads. Hence, the stress state around a plane inclusion in
three-dimensions is locally one of plane strain combined with longitudinal shear.

In general, the three parameters k j (j = 1,2,3) will occur simultaneously over the
inclusion border. They may be interpreted as a measure of the elevation of stresses due to
the presence of thin rigid inclusions embedded in elastic solids. From equation (48), the
formulas

k2 = ~2 lim .j(2r)('nz)9=0
1- v r-O

k3 = lim .j(2r)('tz)9=0
r-O

(49)

are obtained. Equation (49) may be applied to evaluate k j for the boundary-value problems
solved earlier. Following the work of Kassir and Sih [10], it is found that

1. Triaxial tension

4J.l(a2 sin2et> + b2 cos2et»* [b 2 cos2et> - a2 sin2et> ]
k t = + 2 2 . 2 A 2 -At

(aW: b cos et> + a2 sm et>

k = 0 k = _ 16J.l(I-v)A 2 sin et> cos et>
2 '3 (ab)f(a2 sin2et>+b2cos2et»*

in which At and A 2 are given by equation (17).

(50)
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2. Parallel displacement

k _ _ 2J1.ak
2
uo (~)t 2 . 2 2 2-t

1- [(3-4v)P+l)K(k)-E(k) a (a sm I/>+b cos 1/» cos 1/>,

k 4J1.(1- v)ak
2
uo (a)t 2 . 2,+. 2 2 -t·

3 [(3-4v)P+ I)K(k)-E(k) b (a sm 'f'+b cos 1/» sm I/>

(51)

3. Rigid sheet

_ 2bk2ro (~)t 2 . 2 2 2 -t
k1 - + [(3-4v)k2-k'2)E(k)+k'2K(k) a (a sm I/>+b cos 1/» cos 1/>,

(3-4v)aPro (b)t 2 . 2 2 2 -t·
k3 [(3-4v)k2-k'2)E(k)+k'2K(k);i (a sm I/>+b cos 1/» sm I/>

4. Axial displacement

(52)

(53)

It is interesting to note that kj are not constants but functions of position. Equation (53)
is associated with the local displacement shown in Fig. l(b). The displacement modes
pertaining to the results in equations (50) through (52) are more complicated since for
o< I/> < nl2 the inclusion border experiences a combination of the movements illustrated
in Figs. l(a) and 1(c). In particular, the parameters k 1 and k3 in equations (51) and (52)
attain their maximum values at I/> = 0 and I/> = n12, respectively.

For problems involving all three parameters kj (j = 1,2,3), it is possible to postulate a
criterion of failure for rigid inclusions in the form

Ier = !(k 1, k2, k3)

which states that failure of the material surrounding the inclusion occurs when the combina
tion of k

"
k2 , and k3 attains some critical value.
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AficTpaKT-TeopHA nOTeH~HaJIbHblX l!lYH~HA npHJIOlKeHa K pac'leTy HeKoToporo 'IHCJIa TPCXMepHblx

3aAa'l, KacalOIIUlxcA nOJIOC B BHAe HHKJII03HA HaxO,II,AIIUlXCA B ynpyfHX TeJIax. PaCCMaTpHBaIOTCA ABa

THna HHKJII03HA, a HMeHHO: lKecTKHA 3JIHITTH'IecKHA AHCK H lKCCTKaA nOJIoca, coAeplKalOaA 3JIHITTH'IecKoe

oTBepcTBHe. H3MeHAA 3JIHITTH'IHOCTb AHcKa H OTBepcTBHA MOlKHa nOJIy'IHTb HeKoTopble CBeAeHHA 06
06ll\eM xapaKTepe KacalOIIUlxcA HanpAlKeHHA BOKpyr ITJIOCKoA HHKJII03HH npoH3BOJIbHOA l!loPMbl. BOJIee

TO'lHO, B cJIy'lae nOA60pa Ha,II,JIelKall\eA KOOPAHHaTHoA CHCTeMbl, MOlKHa npeAcTaBHTb l!lYHK~OHaJIbHble

l!loPMbl HanpAlKeHHA B 6JIH3KOA OKpeCTHOCTH rpaHH~ HHKJII03HH, He3aBHCHMO OT ee reoMeTpHH H

npHJIOlKeHHblX HanpAlKeHHA HJIH nepeMell\eHHA. Boo6ll\e, HHreHcHl!lHK~A JIOKaJIbHblX HanpAlKeHHA

MOlKeT 6blTb onHcaHa TpeMa napaMeTpaMH, KOTopble HCnOJIb3YIOTCA,ll,JIA cocAaHHA KpHTepeB pa3pyweHHA

TBep,l:\OrO TeJIa, o6JIa,l:\alOll\ero HHKJII03HaMH.


